几何课关于三角形你不得不记住的定理:从勾股定理到托勒密定理 直角三角形的两条直角边的平方和等于斜边的平方。 也叫毕达哥拉斯定理。 表达式为a b =c 。 在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,每一条直角边又是这条直角边在斜边上的射影和斜边的比例中项。 也叫欧几里德定理。 在RtABC中,∠ACB=90°,CD是斜边AB上的高,则有座標上での2点間の 三平方の定理とは、直角三角形の三辺の長さに関する定理である。 斜辺の2乗は他の2辺の2乗の和に等しくなる。 三角形の三辺をa,b,cとし、斜辺がcとするとc^2=a^2b^2となる。左の直角三角形が正三角形を半分にしたものです。 3 3 辺の比は暗記で、 21√3 2 1 3 です。 次に、右の直角三角形に三平方の定理を使うと、 最後の 1 1 辺の長さが求まります。 最後の 1 1 辺の長さを y y とすると y2 =102 y 2 8 2 = 10 2 y2 64 = 100 y 2 64
三平方の定理とは 証明や計算問題 角度と辺の比の一覧 受験辞典